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Abstract

The distribution of a certain IRT based person fit index to

identify systematic types of aberrance is discussed. For the

Rasch model it is proved that: (1) the joint distribution of

subtestresiduals (the components of the index) is

asymptotically multivariate normal, and (2) the distribution

of the index is asymptotically chisquare. The Iarameters of

these asymptotic distributions depend on whether ability of a

person is known or estimated. Furthermore, the rate of

convergence to the asymptotic distribution of the subtest

residuals is analyzed. In order to verify the results for

short tests, a simulation study is conducted.

C
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Asymptotic Distribution of an IRT Person Fit Index

Introduction

If an item response theory (IRT) model correctly

describes the performance of a population of persons on a

test, the item parameters are known and certain regularity

conditions are satisfied, then the maximum likelihood (ML)

estimators of ability are consistent, asymptotically normally

distributed, and efficient (Hambleton & Swaminathan, 1985,

chapters 5 and 7; Lord, 1983). Yet, these properties are no

longer obvious in the presence of occasional or systematical

deviations of the person's response behavior from the model,

which are likely to arise in educational measurement and

testing (Fyans, 1982). When occasional measurement

disturbances, such as temporary carelessness/guessing are

present, robust estimation of ability may be a good solution.

Robust ability estimates show at the cost of only a slightly

increased estimation error for the regular patterns--a

significantly decreased estimation error for the aberrant

patterns (Jones, 1982; Mislevy & Bock, 1982; Wainer & Wright,

1980). However, if systematic measurement disturbances, like

unfamiliarity with the specific domain or copying/guessing to

complete the test are expected, then it is more appropriate

to detect and to diagnose those deviations rather than to

correct them by robust estimation.

For the detection of systematic aberrance, several

person fit indices have been proposed (Levine & Drasgow,

rl
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1983; Smith, 1985; Trabin & Weiss, 1983). Unfortunately, the

exact or asymptotic null distribution of these indices are

not known and therefore their use is limited.

In this paper, the asymptotic distribution of a simple

modification of Smith's (1985) person fit index is

investigated. For the case of known ability, the asymptotic

distributions of subtestresiduals (the components of the

index) as well as of the index itself are derived for a

general IRT model. Next, still within the general framework

of IRT, a basic system of equations connecting subtest

residuals both for known and ML estimated ability is found.

Subsequently, the asymptotic distributions of the subtest

residuals and of the index when ability is estimated by the

ML method are obtained, however, for the Rasch model only.

Furthermore, for the subtestresiduals, the rate of

convergence to the asymptotic distribution is evaluated.

Person Fit Index for Diagnosing Aberrance

Consider a test of n dichotomously scored items, and let

Pi a Pi(9) = P(Xi=119) denote the probability of a correct

response to item i (i = 1,2 ..... n) for a person with ability

9. As usual in IRT, it will be assumed that the Pi's are

increasing functions of 9, and that their first three

derivatives with respect to 9 exist and are finite for all

values of 9. Several examples of such functions, including

the wellknown one, two and three parameier logistic ones,
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can be found in Hambleton and Swaminathan (1985. chapter 3).

A person's response pattern will be denoted by

X a (X1.X2 Xi). The responses are regarded as independent

random variables given ability level 0, i.e., the local

independence is assumed. Finally, it is assumed that all item

parameters are known.

The ML estimate of ability 0, 0, for a person with the

response pattern X, is a solution of the likelihood equation

(Xi Pi)Pi'
(1) El = 0

PiQi

(Hambleton & Swaminathan. 1985, chapter 5; Lord, 1983). where

Pi' is the derivative of Pi with respect to 0, Qi m 1Pi,

and a hat above a function indicates that this function has

to be calculated at 0. Lord (1983) found that for the three

parameter logistic model with known item parameters the ML

estimate of ability is:

P
(2) consistent, i.e., 0 -9 0 as n -9 w

and

(3) asymptotically normally distributed and efficient,

e e g4 N(0,more precisely, N(0,1) as n -9 m;
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where

(4) 1(0) Eipir2ipiQi

is the test information function, and andand 14 denote the

convergence in probability and in distribution, respectively.

In order to carry out the proof Lord needed the following

assumptions: (1) 0 is bounded, (2) the item difficulty and

discrimination parameters are bounded, (3) the pseudo

guessing parameters are bounded away from one, and (4) the

test is lengthened by adding strictly parallel forms. if

person's response variables are nonidentically distributed,

then Lord's assumptions satisfy the regularity conditions of

Bradley and Gart (1962) by which efficient ML estimation of

ability is possible. In this paper we will use similar but

more general assumptions, namely that there exist: a fixed

ability interval [a,b], fixed constants E1,E2,E3 > 0, and a

fixed constant C > 0 such that

(i) El 5 Pi(0) 5 1 E2 for all 0E[a,b],

and all i=1,2 n.

and

(ii) E3 5 Pir(8) 5 C for all 0E[a,b]

and all i=1,2,...,n

1 '3
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Note that under assumptions (i) and (ii), for each 8e(a,b),

(5) 1(0) . as n

Furthermore, if (3) holds, then (2) is true if and only if

(5) is satisfied. Hence, (5) is a necessary condition for (2)

and (3) to hold together. Also, by arguments similar to those

of Lord (1983), it can be shown that the ML estimators of

ability, under assumptions (i) and (ii), satisfy (2) and (3)

for each 8e(a,b).

In this paper, the following betweensubtests person fit

index is used:

(6) BF u Ej
(EieSjXi Pj)2

aj 2

where

(7)

Pj s E(EIESjXI) = EieSjPi.

Var(EiesjXj) = EiesjPiQi.

and Sj (j = 1,2 J) indicates disjoint subtests obtained

from a partition of the original test. The BF index is a

multiplication of Smith's (1985) UB index by a constant:

BF = (J-1)UB. Note that the BF value for a given pattern is

the sum of the squared standardized residuals on the Sj

subtests (in short, subtestresiduals). Extreme (positive)
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values of the index indicate patterns with large deviations

from the IRT expectations on the specific subtests. To detect

such aberrant patterns Smith (1985, 1986) uses a posteriori

fixed critical value justified by a simulation study (Smith,

1988).

Extreme values of the subtestresiduals show that

aberrant behavior occurs on these subtests. Knowing the type

of items in the subtests, attempts to diagnose the kind of

aberrance may be made. Many person fit analyses are possible

dependent on the manner of grouping items into subtests. For

instance, items could be grouped into subtests according to:

the increasing difficulty parameter of the items, their

position in the test, the type of items, or the conceptual

domains covered by the items. Each grouping may have a

different diagnostic meaning. For example, a high positive

value of the subtestresidual on the most difficult items may

suggest that the person was guessing. Likewise, a high

negative value of the subtestresidual on the item subset

covering a specific domain may be an indication that the

person has a poor knowledge of the domain. However, many

person fit analyses should be conducted before a specific

type of aberrance can be pointed out.

Asymptotic Distribution of the Index

Let us consider the asymptotic distribution of the

subtestresiduals as well as of the index if the number of
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items tends to infinity. We will investigate two separate

cases: (1) the person's ability 0 is known, and (2) 0 is

estimated by the ML method from his/her response pattern

First, let us consider the case where ability is known.

In this case, the subtestresiduals will be denoted by

EieSjXi Pj
(8) Yj =

mi
Y a (Y1,Y2,...,YJ).

Since Yj is the standardized sum of independent random

variables (Xi, ieSi) (by the assumption of local

independence), we may apply the central limit theorem with

the Liapunov condition (e.g. Rao, 1965, p.107), So:

(9)

and

Ni E(Xi) = Pi, mil E E(IX.p.12) = PiQi,

pi . E(Ixipil3) = pic4(pi2,442) < piQi;

(EieSjPi)
1/3

Li = (EiesjpiQi) 1/6.

(EieSjai
2
)-

/2

If the number of items in Si, nj, tends to infinity, then

under assumption (i), the series EiESjPiQi is divergent and,

consequently, the Liarinov condition limni_4.Lj = 0 is

satisfied and Yj has asymptotically the standard normal

distribution. Furthermore, the random variables Y1,Y2,...,YJ,
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being functions of disjoint subsets of the independent random

variables Xi's, are independent, too. Hence, we can conclude

that the random vector (Y1,Y2 YJ) has asymptotically the

nonsingular standard normal distribution of rank J, i.e.,

(10) (7[1,Y2

d
YJ) -, N(0,1) as nj -, 00 (j=1,2 J),

where 0 is a vector of J zero's (the vector of the Yi's

means) and I is a JxJ identity matrix (the covariance matrix

of the Yb's).

Now, let us investigate the asymptotic distribution of

the BF index. Note that BF can be represented as a quadratic

form in the variables Y1,Y2 ... namely, BF = Eiy =

YIY', where Y' is the transpose of Y. So, by (10) it becomes
d

clear that BF -, ZIZ', where Z is N(0,I) distributed

(Serf ling, 1980, p.25, Corollary). Subsequently, we can

conclude that BF is asymptotically chisquared with J degrees

of freedom, i.e.,

(11) BF x2,J as n. 4 cc (j =1,2, J)

(Serfling, 1980, p.128, Lemma).

Second, let us consider the asymptotic distribution of

the subtestresiduals and of the index when the exact value

of 8 is replaced by its ML estimate 8. In this case we will

denote
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(12) Y
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aj

EjYj2 = YIY',

Distribution of Person Index

Y = (Y1,Y2 Yj)

10

where pj and cj are calculated according to (7) at 0. Note

that if the ML ability estimates are used instead of true

values, then due to (1), 0, and hence, the pj's and aj's are

functions of the Xi's. Therefore, Yi,Y2 ..... Yj are dependent

random variables. The consequence of the dependency can

easily be found for the Rasch model (RM). For this model,

where Pi = 1/(1+exp[-A(0-bi)]). (bi is the difficulty of item

i and A is a positive constant), we have Pi' = PiQi, and

from (4) for the subtest, information function we obtain

(14) Ij(e) E EiESjPii2/PiQi = EieSjPiQi=

Putting this in (1) we thus have

(15) Ei(Xi - Pi) = = 0.

Hence, for the RM, the random variables Yi,Y2,...,Yj must

satisfy constraint (15). For J = 2, this means that Y1 and

Y2 are perfectly correlated. The subtest-residual over all

I kJ
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items (if J = 1) is always equal to zero. In this way,

similar results for other IRT models can be derived. Yet, as

the dependency of Yi,Y2,...,YJ results in a constraint we

may expect that the joint distribution of the Yj's is

asymptotically a singular normal distribution of rank J-1,

and accordingly BF is asymptotically chi - square distributed

with J -1 degrees of freedom. Let us verify these hypotheses.

In order to find .Ic joint asymptotic distribution of

(Y1,Y2 ..... Yj), the following system of equations derived

fromthedef4.ultionsof Yj and Y- can be used

(16) Y. = J

j pi

(EieSjX j -1),
aj

Ja. a-

where j = 1,2,...,J. Let us start with the question how

the term (pj - pj)/aj can be approximated. Note that

(17) a.2 =
J JJJJ

where

(18) ij a (lInj)EiEsjPi, s (1/n s .(P-5-)2j )E.lE 1 j '

and Q. Ei -Pj. Since under assumptions (i) and (ii), (3)1

holds and from (4) I-44(e) = 0(n"), we have

IC
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(19) 5 o = op(lli),

where Un = Op(vn) denotes that for every e>0 there exists

Ke>0 and NE such that POUn/vnl-S. KO .): 1-e for all n>NE,

i.e., Un/vn is bounded in probablity. Now, applying the
...

nsion to Pi, and using (19) we obtain

Pi - P1 = ( 6 - ' + op(n-li).

P
where Un = or(vn) denotes U / n -3 0. Summing both sides of

the equation over ieSj, d vtding them by aj, and applying

(17), we obtain

...

Pj -µj (0 0)
(20) = ieSjPi + op(1).

acrj

/
i

Likewise, it can be shown that

^ ... ...

1 (Xi -Pi)Pit 1 (Xi-Pi)Pit (0-0) d (Xi -Pi)Pit
Ei - = Ei + (El )

aj PiQi PiQiaj deaj PiQi

(21)

+ op(1).

Having calculated the derivative dai(Xi-Pi)Pi'/PiQi)/d0, it

is then readily seen that the derivative may be written as

(-I(0)+EiKi(Xi-Pi)], where the Ki's do not depend on Xi and
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are bounded (again under assumptions (i) and (ii) and because

all Pi" were assumed to be finite). Calculating the mean

and variance of the last sum and using the Chebyshev

inequality, we obtain EilCi(Xi-Pi) = Op(n11). It is then easy

to show, by the last result, (19) and (17) that

[(0-0)/9][Eilq(Xi -Pi)] = op(1). Using this relation and (1)

in (21), we have

0 - 0 1 (Xi -Pi)Pi'
(22) Ei

aj 1(0)9 PiQi

+ op(1).

Finally, applying the Chebyshev inequality, (20) and (17) in

the similar way, it can be shown that

. 1 1

(23) (EieSjXi Pj)("-- ) = op(1).
a- a-

Using the results (20), (22) and (23), the system of

equations (16) can be replaced by the following cne

EieSjPii (Xi -Pi)Pii
(24) Yj = Yj Ei + op(1), (j=1 ..... J)

I(0)aj PiQi

which will be the basis of our further considerations.

Now, let us return to the RM where, Pi'= PiQi and (14)

holds. For this model, the system of equations (24) may be

expressed in a simple matrix notation. Denoting
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R E ([11(0)/I(0)0.[I2(0)/I(e)P4 (Ij(e)/I(00),

and using (14) and an analog of the first equality in (15) at

9, we obtain from (24) the following important matrix

equation

(25) Y. = Y' R'RY' + z' = AY' +

where A s IR.R, and z m (z1,z2....zj) is a vector of Op(1)

random variables which converges in probability to zero. Let

us now assume that

Ij (0)

(iii) -4 rj as nj -4 w (j=1,2...,,J).
I(0)

Then

(26) R -4 Ro a (r114, r214 . rj%). A -4 A0 a IRo'Ro,

and because of the identity EiIi(0) 1(0), Eiri = 1 and

(27) RoRo' = 1

So, from the multivariate version of Slutsky's theorem (Rao,

1965, p.102, Corollary (x)), we can conclude from (25) and

(26) that
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d
(28) Y' AoY'.

d
Subsequentely, by (10) we have Y' N(0,A0IA0'), (Serf ling,

1980, p. 26, Application A). But AoTA0' = IRo'Ro, because Ao

= Ao' and (27) holds. This means also that the matrix IRo'Ro

is idempotent, and thus of rank r=rank (IRo'Ro) = trace (1

Ro'Ro) = Ej(1rj) = J-1. In turn as known, the characteristic

function of a N(0,IRo'Ro) distributed variable Z is 4(t) =

e . Hence, by an orthogonal transformation

T'=Ct' such that T3 = Ejtjrjli, we can obtain Q(t) =

JQ(T) = E. 1

J
T.

2 (Rao, 1965, chapter 3b3). This means that the
J=

total mass of Z is situated in the hyperplane Ejzjrj'4=0. So

we may regard the following theorem as proved:

Theorem. If for the Rasch model assumptions (i), (ii) and

(iii) are satisfied and ability is estimated by the maximum

likelihood method, then the joint distribution of the

subtestresiduals is asymptotically a singular normal

distribution of rank J-1, i.e.,

(29)
A A

al,Y2
d

Yj) N(0,IRo'Ro)

as nj (j=1,2,...,J),

the total mass of which is situated in the hyperplane

Ejzirj114 = 0.

From the theorem it immediately follows that the asymptotic
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variance and correlation of the Yj subtest-residuals are

-(rjrk)''
(30) Var(i.)->1-r.Corr6r. k )

J. j
f(1-rj)(1-rk))/1

as .11k -4 .. If J = 2, then Corr(Y. ,Y ) -4 1 Thisnj,
k

corresponds to the result on page 10, where the correlation

has been shown to be perfect. Considering also that Ejzjrj'A=0

corresponds to (15), the asymptotic distribution of the Yj's

possess the same two properties as their exact distribution.

Having the limiting distribution of the subtest-

residuals, the limiting distribution of BF can be considered.
d

By (13) and (28) we have BF -+ YA0'IA.010Y. (Serfling, 1980,

p.25, Corollary), where Ao'IAo = I-Ro'Ro is, as was

mentioned, idempotent and of rank J-1. Applying the Fisher-

Cochran theorem (Serf ling, 1980, p.128, Lemma), we may

conclude:

Corollary. If for the Rasch model assumptions (i), (ii) and

(iii) are satisfied and ability is estimated by the maximum

likelihood method, then the index is asymptotically chi-

square distributed with J-1 degrees of freedom, i.e.,

d
(31) BF -+ x2J_1 as nj (j=1,2, J).

9
-C.
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results (10), (11), (29) and (31) may be vary useful in

applications, provided that the error of the approximations

for tests of realistic length is not too large.

Let us restrict ourselves to the error of the standard

normal approximation for the subtestresiduals when ability

is known (see (10)). For any independent random variables

Xi's that have finite third absolute moments, the following

inequality holds

EiesjE( I Xipi13)
(32) Dj s suplFj(x)(x)I 5 C =

(Eiesjx E(IXi pi 12))3/2
B,

where .(x) is the distribution of the nj standardizedFj nj

summands, ,l(x) is the standard normal distribution, and C is

an universal constant independent of nj and of any

characteristic of the Xi's (Se fling, 1980, p.33). It is Pgsy

to show that if our specific Xi's are identically distributed

(Pi = P and thus Qi = Q for all ieSj), then the order of Dj ,

which is given by the inequality, cannot be improved. From

the classical theorem of de MoivreLaplace it follows that

thefunction.00(herethedistributionofisFj Yj

discontinuous at the points xk.(knjP)/(njPQ)tA,

(k=0,1,..,nj), with jumps asymptotically equal to

11/(27rnjPQNexp(xk2/2). Hence Dj is of order 0(njIA). On

the other hand, using (9), we may conclude that Bj is of the

same order. Thus, in general, for the evaluation of the error

it is sufficient to consider the Bj bound in (32).

6`
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Substituting in (32) the moments of Xi, being calculated

in (9), applying Pi2+Qi2 = 1-2PiQi and the CauchySchwarz

inequality (l/n.j)(EieSjPiQi) 2 S EieSj(PiQi)2. and then using

(17) we obtain

C
(33) D. S B. s

J J
[1-2(T.. s.2)].J J J

{n.(13-..s.2)}%
J JJ J

Again with Pi=P for all ieSj, it is easy to show that the

second inequality cannot be improved. So, the bound for Dj

error of the standard normal approximation for Yi in (10), is

a function of nj as well as of the variability of the subtest

Pi(0)'s at a fixed 0, Pj and sj2. The inequalities show that

the bound for Dj, Bj, mainly depends on the behavior of

C/fn(i(5.s2)04.Therefore,forafixed Pj
J

and s-2
'

B.JJJJ
isoforder0(nj -1

J'
1). Next, for a fixed n. the following

conclusions cat be drawn: (a) Bj is minimal when at e all

Pi(0) = 1/2 (note that in this case DjSC/(0.25nj)14); (b) if

the average of the Pi(e)'s at e, Pj, tends to 0 or 1, then Bj

tends to infinity; (c) at a fixed average Pj, the larger the

variation of the Pi(e)'s, sj2, the larger Bj. These

conclusions hold for an arbitrary IRT model for which (10) is

satisfied.

For the RM in particular, using (14) and (17) we obtain

(34)
J

I-J (e) = n.J(iJ..sj2),

0 0
A t j



Distribution of Person Index

19

and from (33)

C
(35) D 5 B. 5 (1 2Ij/n3).

Ij%

The behavior of the subtest information Ij is illustrated in

Figure 1(a) for two cases of Sj subtest: (1) of items with

similar difficulties, and (2) of items with distant

difficulties. However, in both cases the meaLs of the

difficulties are equal, i.e., bj(1) = bj(2) = b0. Then for

ability 0 very close to 130 (where Pj=14), Ij(1) > Ij(2)

because, as can be concluded from the Pi(0)'s for the RM,

Pj(1) fi Pj(2) while sj2(1) < sj2(2). Yet, for more extreme

O's, Ij(1) < Ij(2) because Pj(1) < Pj(2) while sj2(1)ft

sj2(2). Of course, for 0 + Ii(1) and Ii(2) tend to zero

irrespective of the difficulties of the items. If Pi(0) =

P(0) for all ieSj, then bi=b and the highest possible

information is obtained at 0 = b which is equal to 0.25nj.

According to the behavior of Ij and (35), the bound for Dj

error in the two cases is illustrated in Figure 1(b). The

minimal possible error is obtained at 0=b when Pi(0) = P(0)

for all ieSj. However, for the subtest of items with more

spreaded difficulties, the standard normal approximation for

the subtestresidual is better in a broader range of ability.

With increasing the number of items in the subtest, the

approximation becomes better and it is of order n%.

e
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Numerical Results

In order to examine the degree of approximation by the

asymptotic distributions, a hypothetical test was designed

according to the RM. The test was composed of 40 items with

the item difficulties bi sampled from the normal distribution

with mean 0.00 and variance 1.562. To investigate the effect

of different grouping of items into subtests, all items were

ordered and numbered corresponding to the values of bi (from

the lowest to the highest) and then divided into a few

subtests in three analyses. In the first analysis, two

subtests of 20 items were formed (the first subtest consisted

items with numbers from 1 to 20; the second subtest consisted

items 21 to 40). In the second analysis, four subtests of 10

items (items 1 to 10, items 11 to 20, etc.) and in the third

analysis eight subtests of 5 items (items 1 to 5, items 6 to

10, etc.) were constructed. The parameters Pj, sj 2
and Ij of

these subtests, calculated using (18) and (34) for ability

0 = 0.00, are presented in Table 1.

Insert Table 1 about here

Subsequently, five hundred patterns were generated for

0 = 0.00 according to the RM and the values of the subtest

residuals and of the index were calculated in the three

analyses, as well.

2
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The mean and variance of the empirical distribution of

the subtest-residuals are given in columns 2 and 3 of Tables

2. 3 and 4, and the mean and variance of the empirical

Insert Tables 2, 3 & 4 about here

distribution of the index in columns 6 and 7, both for the

case of known ability (i.e., 8 = 0.00) and the case of

ability estimated by the ML method (applying the PML program,

see Gustafsson, 1981). The corresponding results for the

asymptotic distributions, calculated using (10) and (11) for

known ability, and using (29), (30) and (31) for the ML

estimated ability, are given within brackets immediately

below the empirical ones. As is easily seen, a significant

agreement between the empirical and asymptotic means and

variances was obtained.

Furthermore, in order to investigate whether the

empirical distributions can be approximated by their

asymptotic ones, the Kolmogorow-Smirnow and Chi-Square tests

of goodness-of-fit were applied (with the help of the NPAR

TESTS of the SPSS, see Hull and Nie, 1981).

The results of the Kolmogorow-Smirnow test for the

distribution of subtest-residuals are given in columns 4 and

5 of Tables 2, 3 and 4. Here the theoretical distribution of

the Kolmogorow-Smiinow test was assumed to be normal with

mean and variance given within the brackets (i.e., the

20
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appropriate asymptotic distribution). In columns 4 there are

listed values of Do defined in (32). For the case of known

ability, values of Dj are found to be proportional to the

reciprocal of the root of Ij (see (35) and Table 1). In

addition, tilt- results confirm the rules (a), (b) and (c),

specified on page 18. However, it seems that the same

conclusions hold for the case of the ML estimated ability.

Columns 5 of Tables 2, 3 and 4 show that the probability of

exceedance for the KolmogorowSmirnow statistic (and thus

alsoforthe-Do statistic) will be higher than the observed

one. The results obtained for known ability indicate that the

distribution of the subtestresiduals is not satisfactory

approximated by the standard normal distribution, at least in

our example of 20, 10 and 5 item subtests. However, the

results obtained for ML estimated ability seem to be more

promising. For instance, in Table 3 two of the four

distributionsofYo can be regarded as normal at the 0.05

significance level. This discrepancy may be due to the

fact that the number of possible values of the Yj statistic

is higher than that one of the Yj statistic. Therefore, for

estimated ability the empirical distribution is smoother and

with lower values of Dj.

Finally, the results of the usual ChiSquare goodness

offit test for the distribution of the index are shown in

the last three columns of Tables 2, 3 and 4. Here the data

were pooled according to the 30%, 50%, 70%, 90% and 95%th

percentiles of the appropriate chisquared distribution (with

the number of degrees of freedom according to (11) for the
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case of known ability, and according to (31) for ML estimated

ability). Using these percentiles, empty classes could be

avoided. As can be seen, the null hypoth( of a chisquare

distribution of the index cannot be rejected at the 0.05

significance level. In summary, the asymptotic distributions

may certainly be useful for the purpose of person fit

analyses, even for the tests of relatively low length.

Discussion

IRT offers several person fit indices to identify

systematic types of aberrance in a person's response

behavior. Unfortunately, the proper use of these indices has

so far been limited by an insufficient knowledge of their

exact or asymptotic null distribution. Therefore, the

asymptotic distribution of the person fit index and of the

subtestresiduals given in its paper should have some

practical value, at least for the Rasch model and when

ability is estimated by the ML method. So, for instance, in

order to detect the type of aberrance called un, or super

familiarity with specific domains, the following procedure

can be applied. First, the subsets of items covering the J

domains concerned should be specified. Second, for a given

pattern, the ML ability estimate A and the values of Yj and

BF must be calculated. If the value of BF is higher than the

100*a% percentile of the x2 distribution with J-1 degrees of

freedom (see Corollary), then the pattern is classified as
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aberrant with the Type I error equal to a . Third, in order

to examine whether the detected aberrance is due to a

particular domain, values of divided by its standard

deviations (1-ii/i)11, for each of J subsets (see (30) and

(iii)), have to be calculated. If one or more of these values

are lower than the 100*(a/2)% percentilc or higher than the

100*(1-a/2)% percentile of the standard normal distribution

(see Theorem), then we may conclude an interaction between

the subtest scores and the domains. So, we may suspect that a

person is un-familiar with one domain, while he/she is super-

familiar with another. Of course, many other types of

aberrance should be tested before we definitively conclude to

the type of aberrance involved in the test-taking behavior of

the given person.

In order to determine the asymptotic distributions,

assumptions (i), (ii) and (iii) have been made. These

assumptions are rather technical than restrictive, thus, they

can be easy realized when applying the Rasch model.

Considering the fact that tests are usually designed for a

given population of persons, they seem to be mild enough to

satisfy all standard test settings. The first assumption

stipulates that there must exist an interval of ability for

which there are no items with the item characteristic curves

(ICC's) closely approaching the zero and one asymptotes. As

those items are just the ones which are too easy or too

difficult to be included in the test for a given population,

this assumption should easily be satisfied in practice. The

second assumption requires that for the same ability interval

2S
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there are no items of which ICC's are neither almost

horizontal nor almost vertical. This assumption is also met

in most standardized test settings as items of which ICC's

are very flat are considered to be too little discriminating

to be adopted in the test. Likewise, items of which the ICC's

are nearly vertical simply do not exist in practice. The last

assumption stipulates that, with increasing the number of

items in the test, the ratio's of subtest and test

information approach certain constants. In practice, this is

easy to realize as usually in the construction of a test

items are sampled from subdomains in accordance with a fixed

distribution.
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Parameters of subtests for known ability (8 = 0.00)

Subtest Number Subtest Parameter
of items

s.2 IJ
(4,182)

First Analysis

1 20 0.701 2.109 3.768
2 20 0.189 1.211 2.823

Second Analysis

1 10 0.825 0.467 1.397
2 10 0.576 0.669 2.371
3 10 0.282 0.556 1.968
4 10 0.096 0.143 0.855

Third Analysis

1 5 0.882 0.201 0.510
2 5 0.768 0.083 0.887
3 5 0.646 0.385 1.124
4 5 0.509 0.049 1.247
5 5 0.340 0.373 1.104
6 5 0.223 0.050 0.864
7 5 0 126 0.089 0.546
8 5 0.066 0.C90 0.309

34;
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Table 2

Mean and variance of empirical and asymptotic distributions,

and results of goodnessoffit tests from first analysis

Sub Subtest Index
test Residual KS Test ChiSquare Test

Mean Var. Do P(D7.1.14D0) Mean Var. X
2
0 df P(X2X20)

Known Ability (0 = 0.00)

1 0.03 0.96 0.127 0.000
(0.00)(1.00) 1.90 3.60 7.617 2 0.179

2 0.03 0.94 0.136 0.000 (2.00) (4.00)
(0.00)(1.00)

ML Estimated Ability (0 = e)

1 0.02 0.42 0.073 0.010
(0.00)(0.43) 0.97 1.86 8.727 1 0.120

2 0.02 0.55 0.061 0.050 (1.00) (2.00)
(0.00)(0.57)

Note. The parameters of the asymptotic distributions are

given within brackets.
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Table 3

Mean and variance of empirical and asymptotic distributions,

and results of goodness of fit tests from second analysis

Sub Subtest Index
test Residual KS Test ChiSquare Test

Mean Var. Do P(Dn14..,:Do) Mean Var. x20 df p(x2,x20)

1 0.03 0.97

Known Ability (A = 0.00)

0.177 0.000
(0.00)(1.00)

2 0.06 1.00 0.144 0.000
(0.00)(1.00) 3.87 7.32 5.637 4 0.343

3 0.02 0.94 0.160 0.000 (4.00) (8.00)
(0.00)(1.00)

4 0.02 0.97 0.243 0.000
(0.00)(1.00)

ML Estimated Ability (A = i)

1 0.07 0.81 0.080 0.003
(0.01)(0.79)

2 0.03 0.62 0.058 0.070
(0.00)(0.64) 2.95 5.65 10.187 3 0.070

3 0,01 0.69 0.046 0.248 (3.00) (6.00)
(0.00)(0.70)

4 0.03 0.83 0.119 0.000
(0.00)(0.87)

Note. The parameters of the asymptotic distributions are

given within brackets.
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Table 4

Mean and variance of empirical and asymptotic distributions,

and results of goodness of fit tests from third analysis

Sub Subtest- Index
test Residual K-S Test Chi-Square Test

Mean Var. Do P(Dn ?...D0) Mean Var. 2X df P(X4420)

Known Ability (0 = 0.00)
1 0.05 0.99 0.358 0.000

(0.00)(1.00)
2 -0.01 0.98 0.238 0.000

(0.00)(1.00)
3 -0.03 1.02 0.180 0.000

(0.00)(1.00)
4 -0.05 1.05 0.197 0.000

(0.00)(1.00) 8.05 18.85 8.737 8 0.120
5 0.07 1.00 0.193 0.000 (8.00)(16.00)

(0.00)(1.00)
6 -0.04 1.02 0.239 0.000

(0.00)(1.00)
7 -0.01 0.96 0.C11 0.000

(0.00)(1.00)
8 0.05 1.02 0.403 0.000

(0.00)(1.00)

ML Estimated Ability (0 = 0)
1 0.09 0.89 0.277 0.000

(0.00)(0.92)
2 0.03 0.89 0.083 0.002

(0.00)(0.87)
3 -0.00 0.86 0.059 0.062

(0.00)(0.83)
4 -0.04 0.87 0.066 0.027

(0.00)(0.81) 7.13 16.65 2.727 7 0.742
5 0.05 0.90 0.063 0.039 (7.00)(14.00)

(0.00)(0.83)
6 -0.07 0.89 0.135 0.000

(0.00)(0.87)
7 -0.04 0.92 0.230 0.000

(0.00)(0.92)
8 0.01 0.89 0.330 0.000

(0.00)(0.95)

Note. The parameters of the asymptotic distributions are

given within brackets.



(a) Information Function
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(b) Bound for Error of Standard Normal Approximation
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Figure 1. Information function and bound for error of

standard normal approximation for subtest

residuals, in two cases of subtest: (1) of items

with similar difficulties (dashed line), and (2) of

items with distant difficulties (solid line).
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